Your cart

Your cart is empty

Spectrum Pottery Glazes Usage and Tips

Unfortunately there is no perfect set up for dipping glazes that will work in all applications. The goal is to find the right set up, in terms of viscosity and density (or specific gravity) that will provide the finish you want to achieve. Ideally for a clear dipping glaze you are trying to deposit the least amount of glaze that will provide a clear glossy finish over the entire piece. An opaque glaze will require a thicker coating of glaze to provide consistent color and finish over the whole piece. There are several factors that affect the thickness of glaze deposited on a piece. The first is the bisque temperature of the piece. The hotter a piece is bisqued, the tighter the body becomes and the less glaze is picked up by the piece. The formulation of the clay body being used can also affect the tightness or porosity of the piece and therefore the amount of glaze deposited. The other significant factor is dryness or wetness of a piece. The drier a piece is when it is dipped the more glaze it will be able to pick up. This is particularly important for pieces with a lot of underglaze decoration on them. If the underglaze has not been allowed to thoroughly dry before dipping the decorated areas will not pick up as much clear glaze as the areas of bare bisque and may look rough or partially unglazed after firing.

Due to the great variety of conditions under which dipping glazes can be used our recommendations for dipping glaze set up should be used only as guidelines. They are generally appropriate in the majority of cases. However, to obtain the best results for your particular conditions, the first time you use a new dipping glaze, you should dip a series of test pieces in order to determine the range of density and viscosity readings that provide the best results. The simplest way to do this is to start with a set up slightly thicker than recommended and add water in small increments, such as 2 oz. per gallon of glaze being adjusted. Dip a test piece and record density and viscosity after each addition of water. Be careful not to add too much water as glazes that are too thin can settle in the bottom of the container. The results of the fired test pieces should show you the range of density and viscosity readings that produce good results.

Specific gravity is a measure of the density of a liquid measured in grams per cubic centimeter. Water has SG=1.0, which means that 1 cc of water weighs 1 gram. To calculate the SG of a glaze divide the weight of the glaze by the weight of an equal volume of water (i.e. weigh 100 cc of glaze and divide by 100 to obtain the SG of the glaze). This can be done easily using a scale such as an Ohaus triple beam balance and a plastic measuring cylinder cut off at the 100 cc mark. Fill the cylinder to the top, weigh it, remember to subtract off the weight of the cylinder, and divide by 100 to obtain the SG.For a dipping glaze a combination of viscosity and SG is required that will result in the correct thickness of glaze being deposited on the piece in one dip application.

The usual range of SG for a dipping glaze is 1.50 to 1.70, the lower end of the range being for clear glazes and the higher end for opaque glazes. Various other factors will affect the determination of the appropriate SG of the glaze. These factors include whether the piece to be dipped is greenware or bisque, the bisque temperature, whether the piece is made from pug clay or casting slip, the moisture content of the piece, and anything else that affects the ability of the piece to absorb glaze. By comparison brushing glazes usually have SG in the range of 1.45 to 1.60.

Glaze viscosity (or thickness) can be measured in terms of the number of seconds that a given volume of glaze takes to flow through a hole of a certain diameter. The easiest way to measure viscosity is by obtaining a viscosity cup, also called a Zahn cup, from a hardware or paint store plus a stopwatch. The viscosity cup is a small container with an open top and a bowl shaped bottom with a small hole to allow the glaze to flow out. The cup has a handle so that it can be dipped in the glaze. Fill the cup to the brim while holding a finger over the hole. Start your stopwatch when you remove your finger from the hole. Record the time it takes until the stream of glaze breaks at the bottom of the cup and only drips remain. The number of seconds is a reliable measure of the viscosity of the glaze. Dipping glazes generally have viscosities in the 40 to 60 second range, although many of the factors mentioned previously with respect to SG may also call for viscosities outside of this range.

By maintaining the specific gravity and viscosity of a glaze within a predetermined range it is possible to control the thickness of glaze that is deposited on the piece. This is especially important with respect to dipping glazes versus brushing glazes since you want to achieve the desired result with a single dip. Also dipping glazes tend to thicken up as they are used because water is sucked out of the glaze into the bisque as pieces are dipped. Therefore it is necessary to monitor viscosity and SG on an on-going basis, not only in the initial set up of the glaze.

The control of glaze thickness is essential for the production of consistent, high quality results. Glazes that are applied too heavily or too lightly are the cause of any number of glaze defects including pitting, crawling, color variation and rough spots. The most reliable way to check glaze thickness is with a thickness gauge which can be purchased through an instrument supply catalogue. Hold the gauge on the surface of the glaze. When the button is pressed a needle penetrates the glaze to the bisque surface and displays a reading of coating thickness in either millimeters or thousandths of an inch. However for many potters and ceramists the simple scratch test is sufficient. After dipping a test piece and letting it dry, scratch through the glaze down to the bisque with the tip of a knife. The correct thickness of glaze is usually about the thickness of a thumbnail.

Testing pieces to determine the range of glaze thickness that will produce the desired results can save many hours of unnecessary troubleshooting. Once the appropriate thickness range has been determined it can be correlated to a range of viscosity and SG values that produce the correct thickness. Maintaining viscosity and SG within the desired range can usually be achieved by the addition of small quantities of water. There are other materials, such as Spectrum's Glaze Suspender(1071) for thickening and Glaze Thinner(1072), that can be used rather than water.Achieving the proper glaze thickness on a consistent basis through the control of viscosity and specific gravity is one of the keys to avoiding many common glaze defects.